Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Theranostics ; 11(14): 7005-7017, 2021.
Article in English | MEDLINE | ID: covidwho-1524524

ABSTRACT

The tumor suppressor protein p53 remains in a wild type but inactive form in ~50% of all human cancers. Thus, activating it becomes an attractive approach for targeted cancer therapies. In this regard, our lab has previously discovered a small molecule, Inauhzin (INZ), as a potent p53 activator with no genotoxicity. Method: To improve its efficacy and bioavailability, here we employed nanoparticle encapsulation, making INZ-C, an analog of INZ, to nanoparticle-encapsulated INZ-C (n-INZ-C). Results: This approach significantly improved p53 activation and inhibition of lung and colorectal cancer cell growth by n-INZ-C in vitro and in vivo while it displayed a minimal effect on normal human Wi38 and mouse MEF cells. The improved activity was further corroborated with the enhanced cellular uptake observed in cancer cells and minimal cellular uptake observed in normal cells. In vivo pharmacokinetic evaluation of these nanoparticles showed that the nanoparticle encapsulation prolongates the half-life of INZ-C from 2.5 h to 5 h in mice. Conclusions: These results demonstrate that we have established a nanoparticle system that could enhance the bioavailability and efficacy of INZ-C as a potential anti-cancer therapeutic.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Indoles/pharmacology , Lung Neoplasms/drug therapy , Nanoparticles/chemistry , Phenothiazines/pharmacology , Tumor Suppressor Protein p53/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Biological Availability , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Humans , Indoles/chemistry , Indoles/pharmacokinetics , Indoles/therapeutic use , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Nanoparticles/toxicity , Nanoparticles/ultrastructure , Phenothiazines/chemistry , Phenothiazines/pharmacokinetics , Phenothiazines/therapeutic use , Spectroscopy, Fourier Transform Infrared , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
2.
Nat Commun ; 12(1): 6055, 2021 10 18.
Article in English | MEDLINE | ID: covidwho-1475294

ABSTRACT

COVID-19 caused by the SARS-CoV-2 virus has become a global pandemic. 3CL protease is a virally encoded protein that is essential across a broad spectrum of coronaviruses with no close human analogs. PF-00835231, a 3CL protease inhibitor, has exhibited potent in vitro antiviral activity against SARS-CoV-2 as a single agent. Here we report, the design and characterization of a phosphate prodrug PF-07304814 to enable the delivery and projected sustained systemic exposure in human of PF-00835231 to inhibit coronavirus family 3CL protease activity with selectivity over human host protease targets. Furthermore, we show that PF-00835231 has additive/synergistic activity in combination with remdesivir. We present the ADME, safety, in vitro, and in vivo antiviral activity data that supports the clinical evaluation of PF-07304814 as a potential COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Protease Inhibitors/administration & dosage , Indoles/administration & dosage , Leucine/administration & dosage , Pyrrolidinones/administration & dosage , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacokinetics , Alanine/administration & dosage , Alanine/adverse effects , Alanine/analogs & derivatives , Alanine/pharmacokinetics , Animals , COVID-19/virology , Chlorocebus aethiops , Coronavirus 229E, Human/drug effects , Coronavirus 229E, Human/enzymology , Coronavirus Protease Inhibitors/adverse effects , Coronavirus Protease Inhibitors/pharmacokinetics , Disease Models, Animal , Drug Design , Drug Synergism , Drug Therapy, Combination , HeLa Cells , Humans , Indoles/adverse effects , Indoles/pharmacokinetics , Infusions, Intravenous , Leucine/adverse effects , Leucine/pharmacokinetics , Mice , Pyrrolidinones/adverse effects , Pyrrolidinones/pharmacokinetics , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/enzymology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Vero Cells
3.
J Zhejiang Univ Sci B ; 22(7): 599-602, 2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1315902

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has occasioned worldwide alarm. Globally, the number of reported confirmed cases has exceeded 84.3 million as of this writing (January 2, 2021). Since there are no targeted therapies for COVID-19, the current focus is the repurposing of drugs approved for other uses. In some clinical trials, antiviral drugs such as remdesivir (Grein et al., 2020), lopinavir/ritonavir (LPV/r) (Cao et al., 2020), chloroquine (Gao et al., 2020), hydroxychloroquine (Gautret et al., 2020), arbidol (Wang et al., 2020), and favipiravir (Cai et al., 2020b) have shown efficacy in COVID-19 patients. LPV/r combined with arbidol, which is the basic regimen in some regional hospitals in China including Zhejiiang Province, has shown antiviral effects in COVID-19 patients (Guo et al., 2020; Xu et al., 2020). A retrospective cohort study also reported that this combination therapy showed better efficacy than LPV/r alone for the treatment of COVID-19 patients (Deng et al., 2020).


Subject(s)
COVID-19 Drug Treatment , Indoles/administration & dosage , Lopinavir/administration & dosage , Ritonavir/administration & dosage , SARS-CoV-2 , Animals , Drug Interactions , Drug Therapy, Combination , Female , Indoles/pharmacokinetics , Lopinavir/pharmacokinetics , Male , Rats , Retrospective Studies , Ritonavir/pharmacokinetics
4.
Bioorg Chem ; 106: 104497, 2021 01.
Article in English | MEDLINE | ID: covidwho-954532

ABSTRACT

The virus SARS CoV-2, which causes the respiratory infection COVID-19, continues its spread across the world and to date has caused more than a million deaths. Although COVID-19 vaccine development appears to be progressing rapidly, scientists continue the search for different therapeutic options to treat this new illness. In this work, we synthesized five new 1-aryl-5-(3-azidopropyl)indol-4-ones and showed them to be potential inhibitors of the SARS CoV-2 main protease (3CLpro). The compounds were obtained in good overall yields and molecular docking indicated favorable binding with 3CLpro. In silico ADME/Tox profile of the new compounds were calculated using the SwissADME and pkCSM-pharmacokinetics web tools, and indicated adequate values of absorption, distribution and excretion, features related to bioavailability. Moreover, low values of toxicity were indicated for these compounds. And drug-likeness levels of the compounds were also predicted according to the Lipinski and Veber rules.


Subject(s)
Antiviral Agents/metabolism , Azides/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/metabolism , Indoles/metabolism , SARS-CoV-2/chemistry , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacokinetics , Azides/chemical synthesis , Azides/pharmacokinetics , Catalytic Domain , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/pharmacokinetics , Indoles/chemical synthesis , Indoles/pharmacokinetics , Internet , Molecular Docking Simulation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL